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Introduction
All cancers must evolve a means of sustaining self-sufficient growth and evading apoptosis1,2. This process typically occurs via the accumulation of mutational 

events that confer a growth advantage through deregulation of the molecular pathways controlling cell growth and cell fate3. Mutations in over 100 genes are 

known to drive tumorgenesis and within any given tumor there are between 2-8 mutated “driver genes” modulating the activity of critical molecular pathways4. 

Studying the deregulation of molecular pathways impacted by mutational events as well as monitoring expression of these driver genes is critical to gaining a 

complete understanding of the biology underlying cancer.

Molecular pathways are an attractive organizing principle for analysis of gene expression data as they provide a means to combine the noisy information in 

individual genes into stable and meaningful representations of fundamental biological processes5. Gene expression profiling has long been used within the cancer 

field to stratify cell populations and classify tumors6–8. This powerful ability is largely due to the fact that the gene expression state of a cell or tissue contains 

information about the biological processes occurring within a sample9. Pathway-based analyses provide a holistic view of the changes to fundamental biological 

processes allowing for deregulation of regulatory pathways to be linked back to “driver gene” status.
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FIGURE 1: Pathways of the nCounter PanCancer Pathways Panel. Circles representing each of the 13 
canonical pathways show the number of genes selected for the panel in relationship to the total number 
of known genes identified for each pathway as identified by KEGG. Lines have been drawn to show the 
relative overlap of genes that belong to multiple pathways, with thickness of line relating to number of 
shared genes. 

* For a detailed list and description of the 13 canonical cancer pathways, 
please visit www.nanostring.com/pancancer.

Pathways of the PanCancer Pathways Panel

In their seminal paper, Vogelstein et al., argue that understanding 

the deregulation of pathways is integral to understanding 

the biology of any cancer. A growing number of studies have 

demonstrated that pathway based analysis of gene expression 

information provides a framework for understanding the 

discrete changes between the biology of different cancers and 

cancer subtypes10–15. To better understand the intricate network 

of pathways and interactions, NanoString has taken a biology-

guided, data-driven approach to identify over 700 essential 

genes that capture the activity of 13 canonical cancer pathways* 

and associated driver genes (FIGURE 1). Each of the pathways 

was mapped to publicly available data-sources (KEGG http://

www.genome.jp/kegg/, Reactome http://www.reactome.org/,  

GO http://www.geneontology.org/)16–19 as described below 

(see Panel Design) in order to create a tool designed to 

enable a pathway-based approach to exploring the molecular 

mechanisms of cancer and cancer subtyping.
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Proportion of Pathway Genes Included

In order to identify the maximally informative core 

set of genes that comprise the nCounter PanCancer 

Pathways Panel gene list, a variety of selection criteria 

were employed. We began by including 125 genes in 

which mutations are known to drive oncogenesis3. We 

further included 127 genes that appeared in three or 

more pathways and 50 genes that were consistently 

differentially expressed between tumor and healthy 

controls in The Cancer Genome Atlas (TCGA) (http://

cancergenome.nih.gov/) datasets across a number 

of tissues. Finally, an analysis of the cancer literature 

identified another 75 genes as key members of the cancer 

landscape. Together these methods added 297 pathway 

genes central to the understanding of cancer biology to 

our panel.

Additional cancer pathway-associated genes were 

identified using a data-driven statistical approach 

designed to capture genes that explained the maximal 

amount of expression variability for each pathway. That 

is, we sought genes that were not just highly variable in 

their own expression, but whose expression state carried 

information about the expression level of other genes (see 

text box). After this data-driven selection, the resulting 

genes were cross-referenced against our analysis of the 

cancer literature before inclusion in the final nCounter 

PanCancer Pathways Panel gene list.

An annotated list of all genes in the nCounter PanCancer 

Pathways panel is available at www.nanostring.com. This 

interactive list contains information for each gene in the 

panel including its classification, i.e. driver gene, pathway 

member or housekeeping gene, accession, alternate 

names and probe target sequence. Additionally, the gene 

list contains information about each of the pathways along 

with database source information from KEGG, Reactome 

and GO.

Identifying Maximally Informative Pathway Genes
For each pathway and each TCGA dataset, we calculated a stable estimate of the pathway genes’ covariance matrix using the graphical lasso20. Given a set of 
selected pathway genes, this covariance matrix allowed us to measure the proportion of total variability in the unselected pathway genes that could be captured 
by the selected genes. For each pathway, we initialized our selected gene set as the intersection of the pathway’s genes and the 297 genes already included 
in our list. We next selected the gene that, in combination with the already selected genes, predicted the maximum amount of variance of the unselected genes 
across all the TCGA datasets. This process was iterated until the selected genes captured ~90% of the variance of all genes in the pathway (FIGURE 2).

Our examination of the TCGA dataset also allowed for identification of genes with consistently low variance across many cancers. A subset of these genes was 
selected as “housekeepers” intended to aid in data normalization. These 40 genes were also selected based on their ability to provide coverage of the wide 
range of expression levels typically observed in experimental datasets.

PANEL DESIGN

Identification of Cancer Pathway Genes
Due to the coordinate nature of coexpression among genes within a pathway, a relatively small number of genes can capture the majority of the variability in a 

pathway’s gene expression19. The 13 canonical cancer pathways described in the nCounter PanCancer Pathways panel contain a large number of genes. However, 

with a principled approach to gene selection, expression information for only 700 genes is sufficient to capture ~90% of the gene expression variability for all genes 

within the pathways (FIGURE 2).

FIGURE 2: Proportion of total variance in pathways captured by the selected pathway genes. Individual black 
lines denote the proportion of pathway gene variance captured by the selected gene set as gene number 
increases. Each line represents a pathway, and each line’s upper-right terminus corresponds to the number 
of genes ultimately selected for inclusion in the gene list for a given pathway. The thick red line denotes the 
proportion of pathway gene variance captured on average across all pathways and highlight that 60% of genes 
in a pathway are sufficient to capture 90% of the gene expression variance within a pathway.

Proportion of Pathway Genes Included in Panel
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In FIGURE 3, we display a heatmap of pathway 

deregulation scores in the breast cancer data, highlighting 

the tremendous clarity that examination of gene expression 

data at a pathway level affords. We immediately gain insight 

into the intrinsic biology of the four breast cancer subtypes. 

For example, one cluster of Luminal A samples has very 

low deregulation of all pathways, behaving almost like 

normal tissue. Other clusters of Luminal A and B samples 

exhibit much higher pathway deregulation in a set of eight 

pathways (Notch, STAT, TGF-β, Transcription Regulation, 

WNT, Hedgehog, RAS and MAPK). These observations 

suggest that the luminal breast cancer phenotype may 

result from multiple sources of pathway deregulation. 

Basal-like and HER2-enriched samples show very high 

deregulation of an almost entirely different set of pathways 

(Apoptosis, DNA Damage Control, Chromatin Modification, 

PI3K and Cell Cycle), suggesting these tumors rely on a 

fundamentally different mechanism to gain a selective 

advantage, which is consistent with the observations made 

by others9. The boxplots of pathway deregulation scores in  

FIGURE 4 make these observations clear. Interestingly, our 

analysis shows that both cell fate and cell survival pathways 

are deregulated within the cancer samples analyzed. Two 

pathways, STAT and TGF-β, are deregulated in both Basal-

like tumors and the non-normal-like Luminal tumors. This 

pathway-based analytical framework provides a clear 

means of visualizing the need for loss of regulatory control 

in both key cellular processes in order to support tumor 

proliferation. FIGURE 5 examines the deregulation scores 

of the five cell fate pathways. Some pathways appear to 

behave in concert having highly correlated deregulation 

scores, such as the Wnt and Hedgehog pathways  

(FIGURE 5A). In contrast, while both the Wnt and Chromatin 

modification pathways are deregulated in cancer, the extent 

of their deregulation appears to negatively correlated 

(FIGURE 5B). A comparison of activity for the Notch and 

Wnt pathways in these samples highlight a third interesting 

Pathway-based Analyses of Gene Expression Data
The current understanding of cancer pathway architecture and the state of statistical methodologies for pathway-based analysis have progressed to the point 

where a pathway-based analysis can provide an exceptionally informative first look at a gene expression dataset. In order to demonstrate the power of pathway-

based analysis, we examined a subset of publicly available gene expression information from 823 breast cancers and 105 normal breast samples available at 

TCGA. Breast cancers are known to cluster into four subtypes: Luminal A, Luminal B, HER2-enriched, and Basal-like6,9. We used the PAM50 algorithm20 to estimate 

the “intrinsic subtype” of every sample in the dataset.

In order to gain initial insight into the biology of these breast cancer samples, we transformed our measurements of gene expression into measurements of pathway 

deregulation. A number of methods exist for using gene expression to score pathway activity or deregulation12,21,22. We found the Pathifier algorithm12 to extract the 

greatest clarity from this dataset. Pathifier scores pathway deregulation by fitting a curve that captures the maximal variability of pathway gene expression and then 

projecting every observation onto that curve. An observation’s deregulation score is its distance along the curve from the average normal sample.

mode of co-regulation: while all Luminal samples exhibit similar levels of Wnt deregulation, deregulation of the Notch pathway separates Luminal samples into 

a highly deregulated cluster and a minimally deregulated cluster (FIGURE 5C). Finally, FIGURE 5D shows consistent levels of deregulation of the Transcriptional 

Regulation pathway across most samples, with a small subset of samples of all subtypes experiencing extreme deregulation relative to normal. 

FIGURE 3: Pathway deregulation scores in breast cancer samples. Pathifier was used to calculate 
deregulation scores for each pathway (x-axis) in each sample (y-axis). Samples are colored according 
to intrinsic subtype, with Basal-like (red), HER2-enriched (pink), Luminal A (dark blue), Luminal B (light 
blue), and normal samples (green). Deregulation scores were generated relative to expression in normal 
breast tissue and are shown on a continuum from no deregulation (red) to highly deregulated (yellow). 
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FIGURE 5: Deregulation scores of selected cell fate pathways in TCGA breast cancer data. Pathifier-derived deregulation scores from five pathways related to cell fate are plotted 
against each other in order to highlight patterns of coexpression within instrinsic subtypes. Samples are colored according to intrinsic subtype, with Basal-like (red), HER2-enriched (pink), 
Luminal A (dark blue), Luminal B (light blue), and normal samples (green). (A) Hedgehog and Wnt pathway regulation is consistent for all breast cancer subtypes. (B) Chromatin Modification 
and Wnt pathway deregulation and discordant in the majority of samples from each intrinsic subtype. (C) Notch and Wnt pathway regulation is consistent except for a subgroup of Luminal 
tumors. (D) Transcriptional Regulation and Wnt pathway regulation is consistent in Basal and HER2-enriched and discordant in Luminal A and B tumors.
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FIGURE 4: Boxplots of pathway deregulation scores by intrinsic subtype. The distribution of Pathifier deregulation scores of each pathway is plotted for each intrinsic subtype. Samples 
are colored according to intrinsic subtype, with Basal-like (red), HER2-enriched (pink), Luminal A (dark blue), Luminal B (light blue), and normal samples (green). The top and bottom of the 
box delineate the upper and lower quartiles, with the thick line within each box representative of the median. Whiskers extend to capture all data within two standard deviations of the 
mean.

Deregulation of Cell Fate and Cell Survival Pathways
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Data Analysis 
Pathways also provide an excellent lens through which to examine genes’ differential regulation between tumors and controls. This type of analysis can be done 

at the pathway level with gene set enrichment analysis (GSEA)23, while tools like Pathview24 provide for visualization of differential expression of individual genes 

in the context of KEGG pathways. A Pathview plot of differential expression between Basal-like and normal samples in the Cell Cycle pathway highlights genes 

that are up- and down-regulated in these tumors (FIGURE 6). Overall, there is broad up-regulation of many cell cycle genes in Basal-like samples consistent 

with the dysregulation of this pathway in these samples. Interestingly, a Pathview plot of differential expression between Basal-like and normal samples in the 

Apoptosis pathway (FIGURE 7) highlights that a relatively small number of genes likely contribute to the significant dysregulation identified by Pathifier analysis in  

FIGURES 3–5.

FIGURE 6: Differential expression in Basal-like tumors relative to normal tissue within the cell cycle pathway. Differential expression results comparing expression of individual cell 
cycle genes between normal and Basal-like samples are mapped to a KEGG representation of the pathway using Pathview. Proteins whose corresponding genes are up-regulated in 
Basal-like samples are colored red; proteins with down-regulated genes are colored green. 

Data on KEGG graph
Rendered by Pathview

Copyright © 1995-2014 Kanehisa Laboratories

Differential Gene Expression Mapped to Proteins in the Cell Cycle Pathway



WHITE PAPER nCounter® PanCancer Pathways Panel

7

FIGURE 7: Differential expression in Basal-like tumors relative to normal tissue within the apoptosis pathway. Differential expression results comparing expression of individual 
apoptosis genes between normal and Basal-like samples are mapped to a KEGG representation of the pathway using Pathview. Proteins whose corresponding genes are up-regulated 
in Basal-like samples are colored red; proteins with down-regulated genes are colored green.

Conclusion
Gene expression signatures can be used to better understand basic cancer biology and to identify patterns of pathway deregulation in cancers. In this paper, we 

have highlighted the ability of the genes within the nCounter PanCancer Pathways panel to provide a valuable lens through which to examine cancer biology. 

Clustering tumors based on pathway signatures may aid in defining prognosis in patient populations based on the intrinsic biology and outcome of specific 

cancers11, as well as help predict the sensitivity of these tumors to therapeutic agents25–27. Profiling of the driver genes included in our panel provides valuable 

information for those interested in exploring the relationship between driver genes and their impact on pathway activity. As such, tools like the nCounter PanCancer 

Pathways Panel, that provide a way to look at both pathway genes and driver genes, enables analysis of cancer for the translational research community and 

permits the further the development of molecular diagnostics and targeted therapeutics.

Data on KEGG graph
Rendered by Pathview

Copyright © 1995-2014 Kanehisa Laboratories

Differential Gene Expression Mapped to Proteins in the Apoptosis Pathway
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