

NanoString[®] Technologies, Inc.

nCounter Elements[™]

General Purpose Reagents

OPEN ARCHITECTURE DIGITAL GENOMICS

Molecules That Count[®] Gene Expression • Copy Number Variation • Single Cell Gene Expression

REV 2.0

Open Architecture Digital Genomics General Purpose Reagents *for* Laboratory Use

NanoString's nCounter Elements[™] General Purpose Reagents (GPRs) enable digital detection and counting of large sets of nucleic acids in a single reaction without amplification*. They can be used for the development of highly multiplexed Gene Expression or Copy Number Variation assays.

Design and Develop Your Own Assay

>>

»

- Digital
- » nCounter Elements™ GPRs use molecular barcodes to enable digital quantification of nucleic acids of interest
- Multiplexed
- Simple Workflow
- FFPE Compatible

Reproducible

Highly correlated results from Fresh Frozen and FFPE samples

Multiplex up to 216 custom targets per sample in a single tube

» Robust molecular barcoding chemistry and simple workflow minimize variability

3 pipetting steps per sample; no reverse transcription, no library prep, no amplification*

Flexible Format Enables Wide Range of Study Types

- Custom designs for as few as 12 samples
- Ideal for complex projects requiring iterative design
- Target-specific oligonucleotide probes can be re-used in multiple studies

nCounter Elements[™] Chemistry

* Single Cell assay requires reverse transcription and amplification prior to hybridization with nCounter Elements.

** Probes A and B are 65–85 bp oligonucleotide probes that may be purchased from an oligo supply company.

Innovation in Research and Translational Applications

nCounter Elements GPRs enable analysis with color-coded molecular barcodes that facilitate detection and quantification of RNA and DNA targets by hybridizing to target-specific oligonucleotide probes that can be purchased from an oligo supplier. They are ideal for a range of applications requiring efficient, high-precision quantitation of tens to hundreds of target molecules across a sample set. This unique chemistry generates high-quality results from challenging sample types, such as FFPE tissue or crude cell lysates.

RNA Analysis

Gene Expression Analysis

- Analyze up to 216 genes simultaneously
- 3 pipetting steps per sample; no reverse transcription, no amplification, no enzymes*
- Directly assay tissue, cell and blood lysates, and FFPE extracts in a simple workflow
- Precise and reproducible results

Single Cell Gene Expression Analysis

- Analyze a single cell in a single tube for up to 216 genes of interest
- Reliable, digital results from as little as 100pg of RNA
- Obtain single cell sensitivity while minimizing amplification cycles

DNA Analysis

Copy Number Variation Analysis

- Multiplex up to 216 target regions in a single reaction
- Just 25-minutes of hands-on time per 12 samples
- Linearity over wide dynamic range enables analysis of multiallelic CNVs
- Reliable data from FFPE samples

Innovation in Chemistry

Based on NanoString's patented technology, nCounter Elements is a digital, molecular barcoding chemistry that allows users to assemble their own assays with oligonucleotide probes that target their genes of interest. They enable highly multiplexed, direct profiling of individual molecules in a single reaction without amplification*.

Molecules That Count®

Each color-coded barcode represents a single target molecule. Barcodes hybridize to target-specific probes and can be individually counted without the need for amplification* – **providing high-quality digital data.**

Single-molecule barcodes each hybridize to an individual target-specific probe via a unique tag sequence.

solution phase hybridization

Hybridization

nCounter Elements **Reporter and Capture Tags**, target-specific probes (**Probes A and B**), and **Target** molecules hybridize to one another in solution. The **Reporter Tag** carries the signal and the **Capture Tag** allows the complex to be purified and immobilized for data collection.

** Probes A and B are 65–85 bp oligonucleotide probes that may be purchased from an oligo supply company.

1 Molecule = 1 Count

Sample Processing

After hybridization, excess tags and oligonucleotide probes may be removed by magnetic bead purification while hybridized complexes are bound, immobilized, and aligned on a streptavidin surface.

Digital Data Acquisition

Barcodes can be counted and tabulated for each target molecule. Raw data are digital counts for each target nucleic acid which can be used to calculate fold-change (gene expression) or copy number calls.

Robust Molecular Barcoding Chemistry Generates Results Your Can Rely On

The combination of digital counting with a simple, robust workflow minimizes variability. Up to 216 targets can be analyzed in a single reaction with a very high degree of reproducibility. Digital counts increase linearly over a wide dynamic range facilitating accurate fold-change determination of targets of varying expression levels.

Precision Across a Large Range of Gene Expression

Comparison of gene expression counts for 192 genes between 2 technical replicates. Replicates were hybridized with a 192-plex nCounter Elements TagSet. Data demonstrate very highly correlated counts over 4 logs of dynamic range.

10,000 cells were hybridized to an 192-plex nCounter Elements TagSet. Genes were grouped by level of expression and percent CV was calculated for each group. Genes expressed at less than one transcript per cell can be measured with less than 15% CV, allowing for quantitation of 2-fold changes or less even at very low levels of transcript abundance. Precision increases with expression levels, allowing for quantitation of less than 1.2-fold changes for more highly expressed genes.

Reliable, Multiplexed CNV Analysis

A. Tumor Tissue B. Normal Tissue

Accurate Copy Number Calls from FFPE Samples

Copy Number analysis was performed on an FFPE Tumor/Normal Pair from colon tissue (Panel A and B respectively). Standard Elements hybridizations were performed on 300ng of total DNA using a 96 gene Elements TagSet that included 27 cancer genes (3 probes per gene) and additional internal controls. Data was normalized to the internal controls and copy number determined relative to a set of normal FFPE controls. The copy number estimates from the 3 individual probes for each gene were averaged and rounded to the nearest integer.

nanoString

NOTE: Results may vary depending on assay design, sample input, or other factors.

Reliable Results from Challenging Sample Types

nCounter Elements GPRs enable the generation of reliable results even in challenging sample types such as Formalin-Fixed Paraffin-

Embedded (FFPE) tissues or crude cell lysates. The ability to efficiently perform large studies on archival tissues and cell lines are key advantages of nCounter Elements in translational research.

Reliable Results from FFPE Tissues

FFPE and Fresh-Frozen Samples Cluster Together in Gene Expression Analysis. Twelve matched pairs of FFPE and Fresh Frozen tumor samples were analyzed with a 36-plex nCounter Elements TagSet. Each FFPE sample clusters most closely with its Fresh Frozen partner indicating that the FFPE fixation process is not confounding biological insights. Fresh Frozen datapoints were plotted against corresponding FFPE datapoints in linear regression generating an average R² of 0.98.

Results from Crude Cell Lysates

Log2 gene expression counts from 1µL crude cell lysate and 100ng purified RNA from the same sample show high correlation. Each sample was analyzed with an 192-plex nCounter Elements TagSet.

Multiplexed Target Enrichment for Ultra-Low Sample Inputs

Achieve single cell sensitivity while minimizing amplification – single tube assay provides a simple workflow & utilizes the entire sample. A Multiplexed Target Enrichment (MTE) step allows transcripts to be amplified after a reverse transcription step. MTE can amplify 216 targets from a sample in a single tube. The resulting amplified material can then be directly hybridized with nCounter Elements and target-specific probes targeting the genes of interest - no sample clean-up or sample partitioning is required.

Multiplex target enrichment enables sensitive detection of fold changes from very low sample inputs. Fold changes observed with probes using a standard nCounter Elements hybridization and input of 100ng RNA on the x-axis and 100pg prepared with MTE prior to Elements hybridization on the y-axis.

NOTE: Results may vary depending on assay design, sample input, or other factors.

Product and Ordering Information

nCounter Elements[™] GPR TagSets

A TagSet is a pool of nCounter Elements Reporter Tags and the Universal Capture Tag. Each Reporter Tag has a unique molecular barcode and tag that hybridizes to its complimentary sequence on target-specific oligonucleotide probes. The Universal Capture Tag enables the hybridized complex to be immobilized for counting. TagSets are available for analysis of 12 to 216 targets. Core TagSets are pre-mixed with ERCCs to enable analysis of 12 to 192 targets. Extension TagSets, without ERCCs, can be added to any core TagSet to expand the multiplexing capability by 12 or 24 targets.

nCounter Elements[™] GPR Master Kits

Master Kits contain consumables and reagents for post-hybridization processing of samples. They facilitate magnetic bead purification to remove un-hybridized capture and reporter tags and also enable capture and immobilization of barcodes.

Ordering Information

Product Type		Product Number	Description
nCounter Elements TM	duct Type nCounter Elements GPR TagSet General purpose reagents for 12 reactions; includes ERCCs	Product Number ELE-P1TS-012 ELE-P1TS-024 ELE-P1TS-036 ELE-P1TS-048 ELE-P1TS-060 ELE-P1TS-072 ELE-P1TS-084 ELE-P1TS-108 ELE-P1TS-108 ELE-P1TS-120 ELE-P1TS-132 ELE-P1TS-144 FL F-P1TS-156	Description 12 Tags 24 Tags 36 Tags 48 Tags 60 Tags 72 Tags 84 Tags 96 Tags 108 Tags 120 Tags 132 Tags 144 Tags 156 Tags
		ELE-P1TS-156 ELE-P1TS-168 ELE-P1TS-180 ELE-P1TS-192	156 Tags 168 Tags 180 Tags 192 Tags
	nCounter Elements GPR Extension TagSet General purpose reagents for 12 reactions; no ERCCs	ELE-P1EX-012 ELE-P1EX-024	12 Tags 24 Tags
	nCounter Elements GPR Master Kit	ELE-AKIT-048 ELE-AKIT-192	48 Rxns 192 Rxns

CONTACT INFO

NanoString Technologies, Inc.

530 Fairview Ave N Suite 2000 Seattle, Washington 98109

CONTACT US

info@nanostring.com Tel: (888) 358-6266 Fax: (206) 378-6288 www.nanostring.com

SALES CONTACTS

United States:	us.sales@nanostring.com
Europe:	europe.sales@nanostring.com
Other Regions:	info@nanostring.com

* Single Cell assay requires reverse transcription and amplification prior to hybridization with nCounter Elements.

© 2014 NanoString Technologies, Inc. All rights reserved. NanoString[®], NanoString Technologies[®], nCounter[®], Molecules That Count[®], nDesign[™], and nCounter Elements[™] are registered trademarks or trademarks of NanoString Technologies, Inc., ("NanoString") in the United States and/or other countries. All other trademarks and/or service marks not owned by NanoString that appear in this document are the property of their respective owners. The manufacture, use and/or sale of NanoString product(s) may be subject to one or more patents or pending patent applications owned by NanoString or licensed to NanoString from Life Technologies Corporation and other third parties.

